Annals of Military and Health Sciences Research

Published by: Kowsar

Molecular Structure and Response of the Brain-Derived Neurotropic Factor (BDNF) to Exercise

Mohsen Ghanbarzadeh 1 , * , Asma Taheri 1 and Fatemeh Heyat 1
Authors Information
1 Department of Exercise Physiology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
Article information
  • Annals of Military and Health Sciences Research: December 2016, 14 (4); e59774
  • Published Online: December 31, 2016
  • Article Type: Review Article
  • Received: October 11, 2016
  • Accepted: November 29, 2016
  • DOI: 10.5812/amh.59774

To Cite: Ghanbarzadeh M, Taheri A, Heyat F. Molecular Structure and Response of the Brain-Derived Neurotropic Factor (BDNF) to Exercise, Ann Mil Health Sci Res. 2016 ;14(4):e59774. doi: 10.5812/amh.59774.

Abstract
Copyright © 2016, Annals of Military and Health Sciences Research. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Context
2. Methods
3. Discussion
Acknowledgements
Footnote
References
  • 1. Hennigan A, O'Callaghan RM, Kelly AM. Neurotrophins and their receptors: roles in plasticity, neurodegeneration and neuroprotection. Biochem Soc Trans. 2007; 35: 424-7[DOI][PubMed]
  • 2. Ploughman M. Exercise is brain food: the effects of physical activity on cognitive function. Dev Neurorehabil. 2008; 11(3): 236-40[DOI][PubMed]
  • 3. Cotman CW, Berchtold NC, Christie LA. Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci. 2007; 30(9): 464-72[DOI][PubMed]
  • 4. Mattson MP. Energy intake and exercise as determinants of brain health and vulnerability to injury and disease. Cell Metab. 2012; 16(6): 706-22[DOI][PubMed]
  • 5. Ferris LT, Williams JS, Shen CL. The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Med Sci Sports Exerc. 2007; 39(4): 728-34[DOI][PubMed]
  • 6. Hosseini SE, Mojtahedi S, Kordi MR, Shabkhiz F, Fallah Omran S. Effect of short term and light forced treadmill running on BDNF and TrkB in the hippocampus of adult wistar male rats [In Persian]. Razi J Med Sci. 2012; 19(101): 61-7
  • 7. Liu YF, Chen HI, Wu CL, Kuo YM, Yu L, Huang AM, et al. Differential effects of treadmill running and wheel running on spatial or aversive learning and memory: roles of amygdalar brain-derived neurotrophic factor and synaptotagmin I. J Physiol. 2009; 587: 3221-31[DOI][PubMed]
  • 8. Lou SJ, Liu JY, Chang H, Chen PJ. Hippocampal neurogenesis and gene expression depend on exercise intensity in juvenile rats. Brain Res. 2008; 1210: 48-55[DOI][PubMed]
  • 9. Suijo K, Inoue S, Ohya Y, Odagiri Y, Takamiya T, Ishibashi H, et al. Resistance exercise enhances cognitive function in mouse. Int J Sports Med. 2013; 34(4): 368-75[DOI][PubMed]
  • 10. Lee MC, Okamoto M, Liu YF, Inoue K, Matsui T, Nogami H, et al. Voluntary resistance running with short distance enhances spatial memory related to hippocampal BDNF signaling. J Appl Physiol (1985). 2012; 113(8): 1260-6[DOI][PubMed]
  • 11. Gotz R, Koster R, Winkler C, Raulf F, Lottspeich F, Schartl M, et al. Neurotrophin-6 is a new member of the nerve growth factor family. Nature. 1994; 372(6503): 266-9[DOI][PubMed]
  • 12. Nilsson AS, Fainzilber M, Falck P, Ibanez CF. Neurotrophin-7: a novel member of the neurotrophin family from the zebrafish. FEBS Lett. 1998; 424(3): 285-90[DOI][PubMed]
  • 13. Huang EJ, Reichardt LF. Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci. 2001; 24: 677-736[DOI][PubMed]
  • 14. Kuipers SD, Bramham CR. Brain-derived neurotrophic factor mechanisms and function in adult synaptic plasticity: new insights and implications for therapy. Curr Opin Drug Discov Devel. 2006; 9(5): 580-6[PubMed]
  • 15. Mowla SJ, Farhadi HF, Pareek S, Atwal JK, Morris SJ, Seidah NG, et al. Biosynthesis and post-translational processing of the precursor to brain-derived neurotrophic factor. J Biol Chem. 2001; 276(16): 12660-6[DOI][PubMed]
  • 16. Rasmussen P, Brassard P, Adser H, Pedersen MV, Leick L, Hart E, et al. Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exp Physiol. 2009; 94(10): 1062-9[DOI][PubMed]
  • 17. Seifert T, Brassard P, Wissenberg M, Rasmussen P, Nordby P, Stallknecht B, et al. Endurance training enhances BDNF release from the human brain. Am J Physiol Regul Integr Comp Physiol. 2010; 298(2)-7[DOI][PubMed]
  • 18. Takesian AE, Hensch TK. Balancing plasticity/stability across brain development. Prog Brain Res. 2013; 207: 3-34[DOI][PubMed]
  • 19. Yuan J, Yankner BA. Apoptosis in the nervous system. Nature. 2000; 407(6805): 802-9[DOI][PubMed]
  • 20. Lindsay RM, Wiegand SJ, Altar CA, DiStefano PS. Neurotrophic factors: from molecule to man. Trends Neurosci. 1994; 17(5): 182-90[DOI][PubMed]
  • 21. Woo NH, Teng HK, Siao CJ, Chiaruttini C, Pang PT, Milner TA, et al. Activation of p75NTR by proBDNF facilitates hippocampal long-term depression. Nat Neurosci. 2005; 8(8): 1069-77[DOI][PubMed]
  • 22. Heumann R. Neurotrophin signalling. Curr Opin Neurobiol. 1994; 4(5): 668-79[DOI][PubMed]
  • 23. Nagappan G, Zaitsev E, Senatorov VJ, Yang J, Hempstead BL, Lu B. Control of extracellular cleavage of ProBDNF by high frequency neuronal activity. Proc Natl Acad Sci U S A. 2009; 106(4): 1267-72[DOI][PubMed]
  • 24. Arevalo JC, Wu SH. Neurotrophin signaling: many exciting surprises! Cell Mol Life Sci. 2006; 63(13): 1523-37[DOI][PubMed]
  • 25. Yang J, Siao CJ, Nagappan G, Marinic T, Jing D, McGrath K, et al. Neuronal release of proBDNF. Nat Neurosci. 2009; 12(2): 113-5[DOI][PubMed]
  • 26. Kumar V, Zhang MX, Swank MW, Kunz J, Wu GY. Regulation of dendritic morphogenesis by Ras-PI3K-Akt-mTOR and Ras-MAPK signaling pathways. J Neurosci. 2005; 25(49): 11288-99[DOI][PubMed]
  • 27. Yoshii A, Constantine-Paton M. Postsynaptic BDNF-TrkB signaling in synapse maturation, plasticity, and disease. Dev Neurobiol. 2010; 70(5): 304-22[DOI][PubMed]
  • 28. Molteni R, Wu A, Vaynman S, Ying Z, Barnard RJ, Gomez-Pinilla F. Exercise reverses the harmful effects of consumption of a high-fat diet on synaptic and behavioral plasticity associated to the action of brain-derived neurotrophic factor. Neuroscience. 2004; 123(2): 429-40[DOI][PubMed]
  • 29. Wong J, Higgins M, Halliday G, Garner B. Amyloid beta selectively modulates neuronal TrkB alternative transcript expression with implications for Alzheimer's disease. Neuroscience. 2012; 210: 363-74[DOI][PubMed]
  • 30. Park JB, Yiu G, Kaneko S, Wang J, Chang J, He XL, et al. A TNF receptor family member, TROY, is a coreceptor with Nogo receptor in mediating the inhibitory activity of myelin inhibitors. Neuron. 2005; 45(3): 345-51[DOI][PubMed]
  • 31. Harrington AW, Kim JY, Yoon SO. Activation of Rac GTPase by p75 is necessary for c-jun N-terminal kinase-mediated apoptosis. J Neurosci. 2002; 22(1): 156-66[PubMed]
  • 32. Hempstead BL. The many faces of p75NTR. Curr Opin Neurobiol. 2002; 12(3): 260-7[DOI][PubMed]
  • 33. Firouzi M, Sabouni F, Deezagi A, Pirbasti ZH, Poorrajab F, Rahimi-Movaghar V. Schwann cell apoptosis and p75(NTR) siRNA. Iran J Allergy Asthma Immunol. 2011; 10(1): 53-9[PubMed]
  • 34. Kenchappa RS, Zampieri N, Chao MV, Barker PA, Teng HK, Hempstead BL, et al. Ligand-dependent cleavage of the P75 neurotrophin receptor is necessary for NRIF nuclear translocation and apoptosis in sympathetic neurons. Neuron. 2006; 50(2): 219-32[DOI][PubMed]
  • 35. Casaccia-Bonnefil P, Carter BD, Dobrowsky RT, Chao MV. Death of oligodendrocytes mediated by the interaction of nerve growth factor with its receptor p75. Nature. 1996; 383(6602): 716-9[DOI][PubMed]
  • 36. Dubreuil CI, Winton MJ, McKerracher L. Rho activation patterns after spinal cord injury and the role of activated Rho in apoptosis in the central nervous system. J Cell Biol. 2003; 162(2): 233-43[DOI][PubMed]
  • 37. Kawamoto Y, Nakamura S, Nakano S, Oka N, Akiguchi I, Kimura J. Immunohistochemical localization of brain-derived neurotrophic factor in adult rat brain. Neuroscience. 1996; 74(4): 1209-26[DOI][PubMed]
  • 38. Aoki C, Wu K, Elste A, Len G, Lin S, McAuliffe G, et al. Localization of brain-derived neurotrophic factor and TrkB receptors to postsynaptic densities of adult rat cerebral cortex. J Neurosci Res. 2000; 59(3): 454-63[DOI][PubMed]
  • 39. Kandel E, Schwartz J, Jessel T. Principles of Neural Science. 2000;
  • 40. Sweatt JD. Mechanisms of memory. 2009;
  • 41. Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, et al. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A. 2011; 108(7): 3017-22[DOI][PubMed]
  • 42. Nourzadeh M. Evaluation of the mechanisms responsible for memory and learning reduction induced by tooth inflammatory pulpal pain with emphasis on brain-drived neurotrophic factor (BDNF) expression and apoptotic factors in the hippocampus of adult male rats. Kerman Univ Med. 2015;
  • 43. Tapia-Arancibia L, Rage F, Givalois L, Arancibia S. Physiology of BDNF: focus on hypothalamic function. Front Neuroendocrinol. 2004; 25(2): 77-107[DOI][PubMed]
  • 44. Twiss JL, Chang JH, Schanen NC. Pathophysiological mechanisms for actions of the neurotrophins. Brain Pathol. 2006; 16(4): 320-32[DOI][PubMed]
  • 45. Goekint M, Roelands B, De Pauw K, Knaepen K, Bos I, Meeusen R. Does a period of detraining cause a decrease in serum brain-derived neurotrophic factor? Neurosci Lett. 2010; 486(3): 146-9[DOI][PubMed]
  • 46. Griffin EW, Mullally S, Foley C, Warmington SA, O'Mara SM, Kelly AM. Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males. Physiol Behav. 2011; 104(5): 934-41[DOI][PubMed]
  • 47. Smith MA, Makino S, Kvetnansky R, Post RM. Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci. 1995; 15(3 Pt 1): 1768-77[PubMed]
  • 48. Soya H, Nakamura T, Deocaris CC, Kimpara A, Iimura M, Fujikawa T, et al. BDNF induction with mild exercise in the rat hippocampus. Biochem Biophys Res Commun. 2007; 358(4): 961-7[DOI][PubMed]
  • 49. Zoladz JA, Pilc A, Majerczak J, Grandys M, Zapart-Bukowska J, Duda K. Endurance training increases plasma brain-derived neurotrophic factor concentration in young healthy men. J Physiol Pharmacol. 2008; 59 Suppl 7: 119-32[PubMed]
  • 50. Mirzaee S, Hajizadeh Moghadam A, Fathi R, Alizadeh R, Ranjbar R. The effect of 8 weeks of endurance training with different periods of brain-derived neurotrophic factor levels in plasma of male rats. Res Sport Sci. 2011; : 115-28
  • 51. Wu A, Ying Z, Gomez-Pinilla F. Docosahexaenoic acid dietary supplementation enhances the effects of exercise on synaptic plasticity and cognition. Neuroscience. 2008; 155(3): 751-9[DOI][PubMed]
  • 52. Vesdi E, Chubineh R, Barzegar S, Borjian Fard M. The effect of endurance training and omega-3 supplementation on brain-derived neurotrophic factor (BDNF) in the hippocampus of adult male rats [In Persian]. J Med Sci. 2013; 20(111): 50-7
  • 53. Thomas DR. Sarcopenia. Clin Geriatr Med. 2010; 26(2): 331-46[DOI][PubMed]
  • 54. Yarrow JF, White LJ, McCoy SC, Borst SE. Training augments resistance exercise induced elevation of circulating brain derived neurotrophic factor (BDNF). Neurosci Lett. 2010; 479(2): 161-5[DOI][PubMed]
  • 55. Deschenes MR, Maresh CM, Crivello JF, Armstrong LE, Kraemer WJ, Covault J. The effects of exercise training of different intensities on neuromuscular junction morphology. J Neurocytol. 1993; 22(8): 603-15[PubMed]
  • 56. Fahim MA. Endurance exercise modulates neuromuscular junction of C57BL/6NNia aging mice. J Appl Physiol (1985). 1997; 83(1): 59-66[PubMed]
  • 57. Gomez-Pinilla F, Ying Z, Opazo P, Roy RR, Edgerton VR. Differential regulation by exercise of BDNF and NT-3 in rat spinal cord and skeletal muscle. Eur J Neurosci. 2001; 13(6): 1078-84[DOI][PubMed]
  • 58. Cuppini R, Sartini S, Agostini D, Guescini M, Ambrogini P, Betti M, et al. Bdnf expression in rat skeletal muscle after acute or repeated exercise. Arch Ital Biol. 2007; 145(2): 99-110[PubMed]
  • 59. Tang M, Shi S, Guo Y, Xu W, Wang L, Chen Y, et al. GSK-3/CREB pathway involved in the gx-50's effect on Alzheimer's disease. Neuropharmacology. 2014; 81: 256-66[DOI][PubMed]
  • 60. Xie R, Wang P, Ji X, Zhao H. Ischemic post-conditioning facilitates brain recovery after stroke by promoting Akt/mTOR activity in nude rats. J Neurochem. 2013; 127(5): 723-32[DOI][PubMed]
  • 61. Ding Q, Ying Z, Gomez-Pinilla F. Exercise influences hippocampal plasticity by modulating brain-derived neurotrophic factor processing. Neuroscience. 2011; 192: 773-80[DOI][PubMed]
  • 62. Vaynman S, Ying Z, Gomez-Pinilla F. The select action of hippocampal calcium calmodulin protein kinase II in mediating exercise-enhanced cognitive function. Neuroscience. 2007; 144(3): 825-33[DOI][PubMed]
  • 63. Bariohay B, Lebrun B, Moyse E, Jean A. Brain-derived neurotrophic factor plays a role as an anorexigenic factor in the dorsal vagal complex. Endocrinology. 2005; 146(12): 5612-20[DOI][PubMed]
  • 64. Oliff HS, Berchtold NC, Isackson P, Cotman CW. Exercise-induced regulation of brain-derived neurotrophic factor (BDNF) transcripts in the rat hippocampus. Brain Res Mol Brain Res. 1998; 61(1-2): 147-53[DOI][PubMed]
  • 65. Je HS, Yang F, Ji Y, Nagappan G, Hempstead BL, Lu B. Role of pro-brain-derived neurotrophic factor (proBDNF) to mature BDNF conversion in activity-dependent competition at developing neuromuscular synapses. Proc Natl Acad Sci U S A. 2012; 109(39): 15924-9[DOI][PubMed]
  • 66. Mooren F, Völker K. Molecular and cellular exercise physiology. 2005;
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments