Annals of Military and Health Sciences Research

Published by: Kowsar
Uncorrected Proof scheduled for 17 (1)

Repeated Training Creates Spatial Memory in an Adult Male Rat Model of Testosterone-Induced Spatial Learning Impairment

Azadeh Gholaminejad 1 , Nasser Naghdi 1 , 2 , Hamid Gholamipour-Badie 2 and Mohammad Nasehi 1 , 3 , *
Authors Information
1 Department of Cognitive Neuroscience, Institute for Cognitive Science Studies, Tehran, Iran
2 Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
3 Cognitive and Neuroscience Research Center, Amir-Almomenin Hospital, Islamic Azad University, Tehran, Iran
Article information
  • Annals of Military and Health Sciences Research: In Press (In Press); e88819
  • Published Online: March 10, 2019
  • Article Type: Research Article
  • Received: January 6, 2019
  • Revised: February 10, 2019
  • Accepted: February 13, 2019
  • DOI: 10.5812/amh.88819

To Cite: Gholaminejad A, Naghdi N, Gholamipour-Badie H , Nasehi M . Repeated Training Creates Spatial Memory in an Adult Male Rat Model of Testosterone-Induced Spatial Learning Impairment, Ann Mil Health Sci Res. Online ahead of Print ; In Press(In Press):e88819. doi: 10.5812/amh.88819.

Abstract
Copyright © 2019, Annals of Military and Health Sciences Research. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Methods
3. Results
4. Discussion
Footnotes
References
  • 1. Quillfeldt J.A . Behavioral methods to study learning and memory in rats. In: Andersen M, Tufik S, editors. Rodent model as tools in ethical biomedical research. Cham: Springer, Cham; 2016. doi: 10.1007/978-3-319-11578-8_17.
  • 2. Vorhees CV, Williams MT. Assessing spatial learning and memory in rodents. ILAR J. 2014;55(2):310-32. doi: 10.1093/ilar/ilu013. [PubMed: 25225309]. [PubMed Central: PMC4240437].
  • 3. Oe Y, Tominaga-Yoshino K, Hasegawa S, Ogura A. Dendritic spine dynamics in synaptogenesis after repeated LTP inductions: Dependence on pre-existing spine density. Sci Rep. 2013;3:1957. doi: 10.1038/srep01957. [PubMed: 23739837]. [PubMed Central: PMC3674431].
  • 4. Shahrzad P, Nasser N. GABAb receptor antagonist (CGP35348) improves testosterone induced spatial acquisition impairment in adult male rat. J Behav Brain Sci. 2015;5(11):491. doi: 10.4236/jbbs.2015.511047.
  • 5. Marshad RA, Khatib RA, Amer H, Shammari MA, Otaibi AA, Otaibi FA, et al. Streptozotocin-induced diabetes mellitus affects the NMDA receptors: Role of caffeine administration in enhancing learning, memory and locomotor deficits. Int J Health Sci (Qassim). 2018;12(3):10-7. [PubMed: 29896066]. [PubMed Central: PMC5969783].
  • 6. Gasbarri A, Pompili A. Involvement of glutamate in learning and memory. In: Meneses A, editor. InIdentification of neural markers accompanying memory. Elsevier; 2014. p. 63-77. doi: 10.1016/B978-0-12-408139-0.00004-3.
  • 7. Akkerman S, Blokland A, Prickaerts J. Possible overlapping time frames of acquisition and consolidation phases in object memory processes: A pharmacological approach. Learn Mem. 2016;23(1):29-37. doi: 10.1101/lm.040162.115. [PubMed: 26670184]. [PubMed Central: PMC4749836].
  • 8. Szapiro G, Galante JM, Barros DM, Levi de Stein M, Vianna MR, Izquierdo LA, et al. Molecular mechanisms of memory retrieval. Neurochem Res. 2002;27(11):1491-8. doi: 10.1023/A:1021648405461. [PubMed: 12512953].
  • 9. Barnhart CD, Yang D, Lein PJ. Using the Morris water maze to assess spatial learning and memory in weanling mice. PLoS One. 2015;10(4). e0124521. doi: 10.1371/journal.pone.0124521. [PubMed: 25886563]. [PubMed Central: PMC4401674].
  • 10. Martin SJ, Grimwood PD, Morris RG. Synaptic plasticity and memory: An evaluation of the hypothesis. Annu Rev Neurosci. 2000;23:649-711. doi: 10.1146/annurev.neuro.23.1.649. [PubMed: 10845078].
  • 11. McCann RF, Ross DA. A fragile balance: Dendritic spines, learning, and memory. Biol Psychiatry. 2017;82(2):e11-3. doi: 10.1016/j.biopsych.2017.05.020. [PubMed: 28645359]. [PubMed Central: PMC5712843].
  • 12. Mahmmoud RR, Sase S, Aher YD, Sase A, Groger M, Mokhtar M, et al. Spatial and working memory is linked to spine density and mushroom spines. PLoS One. 2015;10(10). e0139739. doi: 10.1371/journal.pone.0139739. [PubMed: 26469788]. [PubMed Central: PMC4607435].
  • 13. Leranth C, Petnehazy O, MacLusky NJ. Gonadal hormones affect spine synaptic density in the CA1 hippocampal subfield of male rats. J Neurosci. 2003;23(5):1588-92. doi: 10.1523/JNEUROSCI.23-05-01588.2003. [PubMed: 12629162].
  • 14. Dudai Y. The neurobiology of consolidations, or, how stable is the engram? Annu Rev Psychol. 2004;55:51-86. doi: 10.1146/annurev.psych.55.090902.142050. [PubMed: 14744210].
  • 15. Mendez-Couz M, Conejo NM, Gonzalez-Pardo H, Arias JL. Functional interactions between dentate gyrus, striatum and anterior thalamic nuclei on spatial memory retrieval. Brain Res. 2015;1605:59-69. doi: 10.1016/j.brainres.2015.02.005. [PubMed: 25680583].
  • 16. Nunez J. Morris water maze experimen. J Vis Exp. 2008;19. doi: 10.3791/897. [PubMed: 19066539].
  • 17. Carver CM, Reddy DS. Neurosteroid interactions with synaptic and extrasynaptic GABAa receptors: Regulation of subunit plasticity, phasic and tonic inhibition, and neuronal network excitability. Psychopharmacology. 2013;230(2):151-88. doi: 10.1007/s00213-013-3276-5.
  • 18. Sieghart W, Ramerstorfer J, Sarto-Jackson I, Varagic Z, Ernst M. A novel GABA(A) receptor pharmacology: Drugs interacting with the alpha(+) beta(-) interface. Br J Pharmacol. 2012;166(2):476-85. doi: 10.1111/j.1476-5381.2011.01779.x. [PubMed: 22074382]. [PubMed Central: PMC3417481].
  • 19. Hasegawa S, Sakuragi S, Tominaga-Yoshino K, Ogura A. Dendritic spine dynamics leading to spine elimination after repeated inductions of LTD. Sci Rep. 2015;5:7707. doi: 10.1038/srep07707. [PubMed: 25573377]. [PubMed Central: PMC4648349].
  • 20. Kornmeier J, Sosic-Vasic Z. Parallels between spacing effects during behavioral and cellular learning. Front Hum Neurosci. 2012;6:203. doi: 10.3389/fnhum.2012.00203. [PubMed: 22783181]. [PubMed Central: PMC3390592].
  • 21. Attardo A, Lu J, Kawashima T, Okuno H, Fitzgerald JE, Bito H, et al. Long-term consolidation of ensemble neural plasticity patterns in hippocampal area CA1. Cell Rep. 2018;25(3):640-650 e2. doi: 10.1016/j.celrep.2018.09.064. [PubMed: 30332644].
  • 22. Jasinska M, Siucinska E, Jasek E, Litwin JA, Pyza E, Kossut M. Effect of associative learning on memory spine formation in mouse barrel cortex. Neural Plast. 2016;2016:9828517. doi: 10.1155/2016/9828517. [PubMed: 26819780]. [PubMed Central: PMC4706958].
  • 23. Moser MB, Trommald M, Andersen P. An increase in dendritic spine density on hippocampal CA1 pyramidal cells following spatial learning in adult rats suggests the formation of new synapses. Proc Natl Acad Sci U S A. 1994;91(26):12673-5. doi: 10.1073/pnas.91.26.12673. [PubMed: 7809099]. [PubMed Central: PMC45501].
  • 24. Yang G, Lai CS, Cichon J, Ma L, Li W, Gan WB. Sleep promotes branch-specific formation of dendritic spines after learning. Science. 2014;344(6188):1173-8. doi: 10.1126/science.1249098. [PubMed: 24904169]. [PubMed Central: PMC4447313].
  • 25. Bourne J, Harris KM. Do thin spines learn to be mushroom spines that remember? Curr Opin Neurobiol. 2007;17(3):381-6. doi: 10.1016/j.conb.2007.04.009. [PubMed: 17498943].
  • 26. Villers A, Godaux E, Ris L. Long-lasting LTP requires neither repeated trains for its induction nor protein synthesis for its development. PLoS One. 2012;7(7). e40823. doi: 10.1371/journal.pone.0040823. [PubMed: 22792408]. [PubMed Central: PMC3394721].
  • 27. Yang Y, Wang XB, Frerking M, Zhou Q. Spine expansion and stabilization associated with long-term potentiation. J Neurosci. 2008;28(22):5740-51. doi: 10.1523/JNEUROSCI.3998-07.2008. [PubMed: 18509035]. [PubMed Central: PMC2561912].
  • 28. Sala C. Molecular regulation of dendritic spine shape and function. Neurosignals. 2002;11(4):213-23. doi: 10.1159/000065433. [PubMed: 12393947].
  • 29. Luscher C, Malenka RC. NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). Cold Spring Harb Perspect Biol. 2012;4(6). doi: 10.1101/cshperspect.a005710. [PubMed: 22510460]. [PubMed Central: PMC3367554].
  • 30. Holcman D, Schuss Z, Korkotian E. Calcium dynamics in dendritic spines and spine motility. Biophys J. 2004;87(1):81-91. doi: 10.1529/biophysj.103.035972. [PubMed: 15240447]. [PubMed Central: PMC1304398].
  • 31. Li M, Masugi-Tokita M, Takanami K, Yamada S, Kawata M. Testosterone has sublayer-specific effects on dendritic spine maturation mediated by BDNF and PSD-95 in pyramidal neurons in the hippocampus CA1 area. Brain Res. 2012;1484:76-84. doi: 10.1016/j.brainres.2012.09.028. [PubMed: 23010313].

Featured Image:

Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments